Determinants of credit to households in a life-cycle model

Michał Rubaszek, Dobromił Serwa
Michał Rubaszek - National Bank of Poland, Warsaw School of Economics. E-mail: michal.rubaszek@nbp.pl.

Dobromił Serwa - National Bank of Poland, Warsaw School of Economics. E-mail: dobromil.serwa@nbp.pl.

The paper has benefited from helpful comments from an anonymous referee, Adam Głogowski, Michał Brzoza-Brzezina, Marcin Kolasa and participants of the conference Macromodels 2010, the seminar at the National Bank of Poland and the seminar of the Macroprudential Research Network at the European Central Bank in April 2011.
Contents

1 Introduction 7

2 The model 9
 2.1 Consumers .. 9
 2.2 Banks ... 11
 2.3 Firms ... 12
 2.4 The government 12
 2.5 Aggregation and stationary equilibrium 13
 2.6 Solution of the model 14

3 Parameterization and solution of the model 16
 3.1 Parameterization 16
 3.2 Solution of the benchmark model 18

4 Simulation results 20
 4.1 Interest rate spread 20
 4.2 Idiosyncratic productivity uncertainty 21
 4.3 Individual productivity persistence 22
 4.4 Replacement ratio 22

5 Empirical evidence 24
 5.1 Data ... 24
 5.2 Estimation results 25

6 Directions for future work 29
List of Tables

1. Parameterization of the benchmark model ... 34
2. Solution of the benchmark model ... 34
3. Interest rate spread and the stationary equilibrium 36
4. Individual income uncertainty and the stationary equilibrium 37
5. Individual productivity persistence and the stationary equilibrium 38
6. Replacement rate and the stationary equilibrium 39
7. Data sources ... 40
8. Models explaining household loans using panel data from OECD and EU countries ... 41
9. Models explaining household loans using cross-sectional data from EU countries ... 42

List of Figures

1. Survival probability and median productivity 35
2. Life-cycle path for key variables .. 35
3. Interest rate spread and life-cycle decisions .. 36
4. Individual income uncertainty and life-cycle decisions 37
5. Individual productivity persistence and life-cycle decisions 38
6. Replacement rate and life-cycle decisions .. 39
Abstract

This paper applies a life-cycle model with individual income uncertainty to investigate the determinants of credit to households. We show that the value of household credit to GDP ratio depends on (i) the lending-deposit interest rate spread, (ii) individual income uncertainty, (iii) individual productivity persistence, and (iv) the generosity of the pension system. Subsequently, we provide empirical evidence for the predictions of the theoretical model on the basis of data for OECD and EU countries.

Keywords: Household credit; life cycle economies; banking sector.

JEL classification: E21, E43, E51.
Non-technical summary

Economic policy makers, macroprudential supervisors or investors need reliable empirical estimates of the equilibrium level of credit in the economy. While earlier theoretical and empirical studies mostly concentrated on the aggregate level of credit to the private sector or the level of credit supplied to firms, more recent research touches the problem of credit to households. Our aim is to contribute to the above literature by proposing a life-cycle model with individual income uncertainty that can be used to assess how various macroeconomic factors affect the equilibrium value of household credit.

Our model consists of consumers living up to 90 years and maximizing expected life-time utility from consumption. They are allowed to save in banks at the deposit interest rate and to borrow from banks at the lending rate. When young, consumers are participating in the labor market. Their wages are subject to idiosyncratic shocks and deterministic life-time profile of productivity. When old, consumers receive pensions. The government collects taxes, pension system contributions and accidental bequests, and spends on public consumption, pensions and transfers. Perfectly competitive firms produce homogeneous goods using the capital and work of households.

The model is calibrated using data from the US economy at annual frequency. First, we compute the levels of capital, market interest rates, household income, consumption and credit to households in the stationary equilibrium. In the benchmark parameterization the equilibrium level of credit equals to 14% of GDP and it resembles the level of consumer credit in typical developed economies. Subsequently, we analyze how the level of credit to households depends on the parameterization of the model. We show that its value reacts to changes in the lending-deposit interest rate spread, individual income uncertainty and persistence, and the generosity of the pension system. A larger spread, higher income uncertainty or persistence, and increased pensions all reduce the level of credit in relation to GDP.

As a robustness check, we estimate the econometric models approximating the long-run relationship between credit to households and the above mentioned factors. On the basis of aggregate cross-sectional and panel data for OECD and European Union (EU) countries, we find some empirical support for the predictions of the theoretical model.
1 Introduction

Economic policy makers, macroprudential supervisors or investors need reliable empirical estimates of the equilibrium level of credit in the economy. When the level of credit is low, high dynamics of credit might reflect an adjustment to the equilibrium, financial deepening in emerging economies for instance. When the level of credit is high, even a one-digit growth rate of credit may be considered excessive. Deviations of credit from its equilibrium often lead to a widening of macroeconomic imbalances, e.g. rising inflation, asset bubbles, inefficient booms and bursts or instability of the financial system. Moreover, banks are also interested in the relationship between their credit policies and the state of the economy, since macroeconomic instability caused by excessive credit supply usually hits them back by deteriorating their assets. This, in turn, may even cause a banking crisis.

The issue of the equilibrium level of credit in the economy is addressed in the literature from different perspectives. Several papers use theoretical models to analyze the equilibrium level of credit over business cycles by identifying phases of credit rationing or credit booms (Kiyotaki and Moore, 1997; Azariadis and Smith, 1998; Lorenzoni, 2008). In the similar spirit, DSGE models have been used recently to analyze the asymmetry in the behavior of borrowers and lenders in reaction to structural, and in particular financial shocks (Iacoviello, 2005; Gerali et al., 2010).

The other group of articles is rather empirical in nature and estimate a long-run relationship between the aggregated value of credit and a set of standard macroeconomic factors such as output, prices or interest rates. The main finding of these studies is that for most countries the value of credit tend to increase with GDP and asset prices, and to decrease with the level of interest rates (see Egert et al., 2007 and references therein).

While earlier theoretical and empirical studies mostly concentrated on the aggregate level of credit to the private sector or the level of credit supplied to firms, more recent research touches the problem of credit to households. A number of studies investigate credit markets in a general equilibrium framework, taking into account a default risk, idiosyncratic uncertainty and life-cycle profile of income (Lawrance, 1995; Ludvigson, 1999; Athreya, 2002; Chatterjee et al., 2007; Livshits et al., 2007).
Our aim is to contribute to the above literature by proposing a life-cycle model with individual income uncertainty that can be used to assess how various macroeconomic factors affect the equilibrium value of household credit. We show that its value depends on (i) the lending-deposit interest rate spread, (ii) individual income uncertainty, (iii) individual productivity persistence, and (iv) the generosity of the pension system. Subsequently, on the basis of aggregate data for OECD and European Union (EU) countries, we find some empirical support for the predictions of the theoretical model.

The rest of the paper is organized as follows. Section 2 outlines the life-cycle model we use for our simulations. Section 3 describes the benchmark parameterization and solution of the model. Section 4 contains the results of simulations aimed at detecting the determinants of household credit. Section 5 presents the empirical evidence. The last section discusses areas for future research.
2 The model

In this section we present a dynamic, life-cycle general equilibrium model with individual income uncertainty, which in many aspects is similar to that developed by Huggett (1996). The novelty of our model is that it includes banks that differentiate between rates for deposits and loans. The detailed structure of the model is as follows.

2.1 Consumers

Each period, which corresponds to one year, a new generation of consumers is born. The duration of each consumer’s life is uncertain. The exogenous probability of surviving to age $j + 1$ conditional on surviving to age j, which is the same for all individuals, is equal to s_j, where $j \in J = \{1, 2, \ldots, J\}$. Death is sure after period J, which means $s_J = 0$. The resulting unconditional probability of surviving till age j at time of birth amounts to $S_j = S_{j-1}s_{j-1}$ for $j \in J/\{1\}$, where $S_1 = 1$.

Population is growing at an annual gross rate γ and thus the population of cohort j is $N_j = S_j\gamma^{-(j-1)}$, where the population of the newborn cohort is normalized to one, $N_1 = 1$. Consequently, total population amounts to $N = \sum_{j \in J} N_j$.

Individuals derive utility from consumption c, which is maximized over their lifespan according to:

$$E_0 \left\{ \sum_{j \in J} \beta^j S_j u(c_j) \right\},$$

where β is the time discount factor and E_0 is the expectation operator conditional on information available at the beginning of period 1.

The life of individuals consists of two parts.1 During initial J_1 years they participate in the labor market by supplying a fixed part of their available time \bar{t} and receiving renumeration:

$$y(j, u) = (1 - \tau_w - \kappa)w\bar{t}z_j(e) \text{ for } 1 \leq j \leq J_1.$$

Here τ_w is the income tax rate, κ denotes the social contribution rate and w stands for real wages. The term $z_j(e)$ describes individual productivity that depends on age j

1Persons under working age are excluded from the analysis.
and idiosyncratic productivity e. The age component of productivity is deterministic, whereas the idiosyncratic component e is stochastic and takes one value from the set $\{e_1, e_2, \ldots, e_M\}$. This component follows a Markov process with a transition matrix π, so that the probability distribution of next period productivity e' equals to:

$$ p(e') = \pi p(e). \quad (3) $$

It can be noted that since productivity shocks are independent across agents, the uncertainty at the individual level does not lead to aggregate uncertainty over labor supply.

In the second part of life individuals are on mandatory retirement and receive pensions:

$$ y(j, e) = b \text{ for } j > J_i \quad (4) $$

that do not depend on age, individual productivity or earnings history.²

Individual income can be spent on consumption c or saved in the form of bank deposits that pay a rate $r_d(1 - \tau_r)$, where τ_r is a capital tax rate. Moreover, individuals are allowed to borrow from banks at a rate r_{ij} that depends on age due to reasons discussed in the next subsection. We do not impose any limits on the amount of debt, but the terminal condition stating that if an individual survives till the terminal age J, the value of her net worth must be null. The resulting budget constraint is of the form:

$$ a' = \begin{cases}
 a(1 + r_d(1 - \tau_r)) + y(j, e) + tr - c & \text{for } a \geq 0 \\
 a(1 + r_{ij}) + y(j, e) + tr - c & \text{for } a < 0
\end{cases} \quad (5) $$

where a' is net financial position (net worth) in the next period and tr denotes transfers from accidental bequests.

The value function of an individual at age j with the individual state $x = (a, e)$ is the solution to the following dynamic programming problem:

$$ V_j(x) = \max_c \{u(c) + \beta \mathbb{E}[V_{j+1}(x')|x]\}, \quad (6) $$

subject to (2)-(5) and conditions stating that at birth and after period J net worth is null.

²This assumptions can be viewed as an approximation of a redistributive pay-as-you go pension system. Moreover, it eases the computational burden since a variable capturing an individual’s earnings history needs not be included in the consumer optimization problem.
2.2 Banks

The banking sector is perfectly competitive. Banks are maximizing profits from granted loans \(cr \) and collected deposits \(dep \), for which net real interest rates are equal to \(r_l \) and \(r_d \), respectively. The difference between collected deposits and granted loans is covered by participation in the bond market, where funds can be raised or deposited at rate \(r \). Profits of a representative bank are equal to:

\[
P_b = (r_l - r) cr + (r - r_d) dep - \Psi(cr, dep),
\]

where \(\Psi \) is an increasing and differentiable cost function with the first derivatives \(\Psi_1 \) and \(\Psi_2 \). Expression (7) is maximized for:

\[
\begin{align*}
r_l &= r + \Psi_1(cr, dep) \\
r_d &= r - \Psi_2(cr, dep).
\end{align*}
\]

Apart from the existence of the fixed costs, while taking loan an individual is obliged to insure against the risk of unexpected death, in case of which her loan is not repaid. The resulting real lending rate for individuals at age \(j \) amounts to:

\[
r_{l,j} = r_l + (1 - s_j)(1 + r_l).
\]

In the case of unexpected death of a depositary, her deposit is taken by the government and equally distributed among all individuals in the form of transfers.

Two things should be noted. First, we justify the existence of the interest rate spread solely by fixed costs and the probability of death, whereas in reality other factors are also significant (see e.g. Saunders and Schumacher, 2000 for an extended discussion).\(^3\) Second, the above specification implies null profits of the banking sector.

\(^3\)One important factor is the risk of default. Under assumption that all borrowers are subject to the exogenous probability of default (known a priori with certainty at the aggregate level), and all of them insure fully against that risk by paying the appropriate premium to the bank, the spread will also contain the default insurance.
2.3 Firms

The goods market is perfectly competitive. Identical firms of measure one are producing a homogeneous good Y using effective labor L and capital K:

$$Y = F(K, L). \quad (10)$$

We assume that F is strictly increasing and concave in both inputs, obeys the Inada conditions and is characterized by constant returns to scale.

Effective labor, which is hired from households, is remunerated at a gross wage w. In the case of capital, firms are financing its purchase by participating in the bond market, where funds can be raised at the real rate r. Moreover, the capital depreciates at an annual rate δ. Consequently, profits of a representative firm amount to:

$$\mathcal{P}_f = Y - wL - (r + \delta)K. \quad (11)$$

This expression is maximized if factor prices are equal to their marginal products:

$$F_K(K, L) = r + \delta$$
$$F_L(K, L) = w. \quad (12)$$

2.4 The government

The role of the government is threefold. First, it collects taxes to finance public expenditures G, where it is assumed that the central budget is balanced:

$$G = \tau_r(r_dDep) + \tau_w(wL). \quad (13)$$

The second role is to supervise the “pay as you go” pension system, which collects contributions from workers and distributes them equally among retirees. The retirement b is not related to earnings history, but equals to a fraction of the average net wage \overline{w}:

$$b = \theta\overline{w}, \quad (14)$$
where θ describes the average replacement ratio. The budget of the pension system is balanced, i.e.:

$$\kappa wL = b \sum_{j=J_1+1}^{J} N_j. \quad (15)$$

Finally, the government is responsible for collecting accidental bequests, the aggregate value of which amounts to B, and distributing them in the form of transfers. The value of the transfer is the same for all individuals and amounts to:

$$tr = \frac{B}{\gamma N}. \quad (16)$$

2.5 Aggregation and stationary equilibrium

In this subsection we will discuss a concept of stationary equilibrium of the model economy. We start by defining aggregate variables. Then, we present stationary equilibrium conditions.

Given the heterogeneity across individuals in terms of age j and the individual state $x = (a,e)$, we need some measure of the distribution. Let $(\mathcal{X}, \mathcal{B}, \phi_j)$ be a probability space, where $\mathcal{X} = \mathbb{R} \times \mathcal{E}$ is the state space, \mathcal{B} is the Borel σ-algebra on \mathcal{X} and ϕ_j a probability measure. For each set $B \in \mathcal{B}$ the share of individuals with $x \in B$ in total population of cohort j is given by $\phi_j(B)$. Since individuals are born with no assets nor debt, the distribution ϕ_1 is given exogenously be the initial distribution of productivity u. To calculate remaining ϕ_j we need to define a transition function $Q_j(x, B)$, which describes the probability that an individual at age j with the current state x will transit to the set B next period.\(^4\) The distributions can be then obtained recursively as:

$$\phi_{j+1}(B) = \int_{\mathcal{X}} Q_j(x, B) d\phi_j, \text{ for all } B \in \mathcal{B}. \quad (17)$$

Finally, let us define $c_j(x)$ and $a_j^*(x)$ as policy functions of individuals at age j for consumption and next-period asset holdings. The aggregate variables, which are consistent with individual behavior are as follows.

\(^4\)A detailed description of the conditions that need to be satisfied by the transition function are given in Rios-Rull (1997)
The model

National Bank of Poland

14

Consumption: \[C = \sum_{j \in J} N_j \int_X c_j(x) d\phi_j \]

Effective labor: \[L = \bar{l} \sum_{j \in J} N_j \int_X z_j(x) d\phi_j \]

Capital: \[K' = \sum_{j \in J} N_j \int_X a'_j(x) d\phi_j \]

Accidental bequests: \[B = \sum_{j \in J} (1 - s_j) N_j \int_X a'_j(x)(1 + r(1 - \tau_r)) d\phi_j \]

A stationary equilibrium is defined as the policy functions of individuals \(c_j(x) \) and \(a'_j(x) \), labor and capital demand of firms (\(K \) and \(L \)), factor prices (\(w \) and \(r \)), transfers (\(tr \)), tax rates (\(\tau_r \) and \(\tau_w \)) and government spending (\(G \)), social contribution rate (\(\kappa \)) and the value of pension (\(b \)), as well as distributions \(\{ \phi_j : j \in J \} \), that fulfill the following conditions:

1. The policy functions \(c_j(x) \) and \(a'_j(x) \) are optimal in terms of the optimization problem given by (6).

2. Factor prices are equal to marginal products given by (12).

3. The goods market clears: \(F(K, L) = C + G + K' - (1 - \delta)K \).

4. Capital stock per capta is constant: \(K' = \gamma K \).

5. The government budget is balanced (eq. 13).

6. The budget of the pension system is balanced (eqs. 14 -15).

7. Aggregate transfers are equal to accidental bequests (eq. 16).

8. Distributions \(\phi_j \) are invariant and consistent with individual behavior.

2.6 Solution of the model

We start the computation of the stationary equilibrium by discretizing the space for net financial position \(a \) over grid points \(A = \{ a_1, a_2, \ldots, a_m \} \). We set the bounds \(a_1 \) and \(a_m \) at levels not constituting a constraint on the optimization problem. This means that these values are never chosen by individuals as next period asset holdings. The number
of grid points is chosen to be \(m = 701 \), but we do not restrict the choices to lie in the grid, but use interpolation to cover any intermediate choices.

The algorithm is as follows (see Huggett, 1996 or Heer and Maussner, 2005, p. 390):

1. Set the initial value of \(K \).
2. Compute \(r \) and \(w \) with (12) that are consistent with \(K \).
3. Solve the Bellman equation (6) by backward induction and compute the value function \(V_j(x) \) and policy functions \(c_j(x) \) and \(a'_j(x) \) for \((x, j) \in \mathcal{A} \times \mathcal{E} \times \mathcal{J} \).
4. Given the initial distribution \(\phi_1 \), which is known, compute distributions \(\phi_j \) for \(j > 1 \) by forward induction.
5. Compute next-period capital stock \(K' \).
6. In case of convergence \((K' = \gamma K) \) stop. Otherwise repeat from step 2 with the value of \(K \) from the last iteration.

All computations were done with Gauss codes of Heer (2004), which we translated to Matlab and extended.
3 Parameterization and solution of the model

3.1 Parameterization

The model frequency is annual and its parameters are calibrated partly on the basis of the relevant literature and partly so that the stationary equilibrium matched selected long-run averages for the US economy. The benchmark parameter values are displayed in Table 1.

We assume that individuals become economically active at age 20, work for maximum 43 years, and at age 63 go for mandatory retirement that lasts up to 28 years. This means that the model describes the behavior of \(J = 71 \) cohorts of age from 20 to 90. The conditional survival probabilities \(s_j \), which are taken from U.S. Census Bureau (2009, Sec. 2, Tab. 105), are presented on the left panel of Figure 1. The population growth rate is fixed at 1% per year (\(\gamma = 1.01 \)), which reflects the US 1980-2008 average. The resulting share of retirees (aged 63-90) in total population (aged 20-90) amounts to 24.7%. This compares to the observed ratio in the US of about 20% in 2008 and the projected ratio of about 25% in 2020 (U.S. Census Bureau, 2009, Sec. 1, Tab. 7-10).

Individuals spend 30% of their time available at work \((\bar{l})^5\) and derive utility from consumption, which is of the CRRA form:

\[
u(c) = \begin{cases}
\frac{c^{\eta-1}}{\eta-1} & \text{for } \eta \neq 1, \eta > 0 \\
\ln c & \text{for } \eta = 1.
\end{cases}
\]

(18)

The value of the relative risk aversion coefficient \(\eta \) is set to 2, which is in the middle of the range commonly used in the literature. The discount factor \(\beta \) is fixed at a standard value of 0.98.

The idiosyncratic productivity \(z_j(e) \) is assumed to be of the form:

\[z_j(e) = \bar{z}_j \times e,\]

(19)

where \(\bar{z}_j \) describes a deterministic age-profile of productivity and the logarithm of \(e \) follows an AR(1) process:

\[
\ln e' = \rho \ln e + \varepsilon, \quad \varepsilon \sim N(0, \sigma_j^2).
\]

The values for \(\xi_j \), which are presented on the right panel of Figure 1, are taken from Huggett (1996).\(^6\) The figure shows that the median productivity\(^7\) is initially low, amounting to about one quarter of the average, then increases steadily to reach a peak for individuals aged about 50, and declines thereafter. The values of \(\rho \) and \(\sigma_j^2 \) are set to 0.96 and 0.045 (see Huggett, 1996, and the discussion therein). For computational reasons, the autoregressive process given by (20) is approximated by a nine state Markov chain with the method proposed by Tauchen (1986).

Finally, following Huggett (1996) and taking the evidence that earnings inequality is increasing with age (Heathcote et al., 2005), we set the variance of log-productivity in cohort 1 at two thirds of unconditional productivity for the logarithm of \(e \):

\[
\sigma_1^2 = \frac{2}{3} \times \frac{\sigma^2}{1 - \rho^2}.
\]

As regards the production function, we assume that it is of the Cobb-Douglas form:

\[
F(K, L) = K^\alpha L^{1-\alpha}.
\]

The elasticity \(\alpha \) is set to 0.3 and the depreciation rate \(\delta \) is fixed at 0.08, so that in the stationary equilibrium the labor share in income and the values for capital-output and investment-output ratios reflect the long-term average for the US economy.

Next, we fix public consumption expenditures \(G \) at 20\% of output and choose the capital tax rate \(\tau_c \) to be 0.15, which corresponds to the long-term capital gains rate in the US in 2008. The replacement rate \(\theta \) is set to 0.40, which reflects the average value in the US in 2006 (OECD, 2009). Finally, we assume that in equilibrium the interest rate spreads \(\Psi_1 = r_l - r \) and \(\Psi_2 = r_d - r \) are equal to 2 percentage points and 1 percentage point, respectively. The total lending-deposit interest rate spread of 3 percentage points reflects the observed 1980-2008 average spread of 3.1 percentage

\(^6\)In particular we took the values from the website of Dean Corbae:
http://sites.google.com/site/deancorbae/teaching.

\(^7\)Given the log-normal distribution of \(e \), the mean productivity of cohort \(j \) is equal to \(\bar{z}_j \exp(\sigma_j^2/2) \), where \(\sigma_j^2 \) is the variance of the logarithm of idiosyncratic productivity among individuals of age \(j \).
points between the interest rate charged by US banks on loans to prime private sector customers minus the treasury bill interest rate.\(^8\)

3.2 Solution of the benchmark model

The stationary equilibrium values for key variables and ratios are as follows (Table 2). The shares of private consumption, investment and government spending in GDP are 56.2\%, 23.8\% and 20.0\%, respectively. The capital-output ratio amounts to 2.643, which implies the market real interest rate at 3.3\%. The resulting deposit and lending rates are 2.3\% and 5.3\%. The income tax and social contribution rates consistent with balanced budget conditions (13) and (15) are equal to 27.5\% and 8.4\%, respectively. Finally, the value of household credit amounts to 14.3\% of GDP and the population with non-positive financial assets constitute 32.5\% of total population.

It is worthy to mention that our model does not distinguish between consumption of durables (e.g. housing) and nodurables. Therefore, the value of 14.3\% of GDP might be interpreted here as a level of consumer credit in the economy rather than the value of mortgage loans. In fact, the volume of housing loans in developed countries (58\% of GDP on average in the EU in 2009) is usually a multiple of the calculated household credit, while the level of consumer credit is often close to this value (8.6\% on average in the EU in 2009).

Figure 2 presents life-cycle paths for the average values of key model variables. It shows that the average income of workers, which is defined as the sum of labor income, capital income and transfers, is hump-shaped. This is mostly due to the shape of the deterministic component of idiosyncratic productivity \(\tilde{z}_j\) (see left panel of Figure 1). The average income of retirees is almost flat. The lifetime profile of consumption is also hump-shaped, but its variability is much lower than that of income. It can be noticed that the consumption profile to some extent tracks the profile of income, which is in line with the empirical evidence presented by Carroll and Summers (1989).

As regards the path of the average net financial position and the average value of credit, it reflects the life-cycle profiles of income and consumption. In initial periods,

\(^8\)According to the World Bank data: http://data.worldbank.org/indicator/FR.INR.RISK.
when income is relatively low, individuals are taking loans as they expect that their income will increase in the future. Consequently the share of population with non-positive financial position is high. Then, individuals accumulate financial assets to protect against expected income decrease in the retirement period. The average value of net financial position reaches a peak for cohorts of age around 60. In the last periods individuals are using their life-time savings to keep consumption above their income, which is determined by the value of pension.
4 Simulation results

This section presents the results of a series of simulations that were aimed to quantify how different factors influence the amount of household credit in the economy. In particular, we investigate how life-cycle decisions depend on:

- the cost-effectiveness of the banking sector;
- individual income uncertainty;
- the persistence of an individual productivity process;
- the generosity of the social security system;

The results are presented in the below subsections.

4.1 Interest rate spread

We start by investigating how the effectiveness of the financial sector, measured by the lending-deposit interest rate spread \(r_l - r_d \), affects the economy. In all scenarios we assume that the lending-market rate spread is twice higher than the market-deposit rate spread, \(r_l - r = 2(r - r_d) \).

An increase of the spread affects the economy in the following way. A decrease of the deposit rate deter individuals from savings. The aggregate value of deposits, and hence capital, is falling, which leads to an increase of the market rate. As regards the lending rate, it is rising due to changes of the spread and the market rate. This discourages individuals from taking loans. As a result, the value of household credits shrinks.

The results, which are presented in Table 3 and Figure 3, show that an increase of the spread from the baseline value of 3 percentage points to 6 percentage points raises the lending rate from 5.3% to 7.8%, and decreases the household credit to GDP ratio from 14.3% to 7.2%. Moreover, a decline in the stock of capital means that output, wages and pensions are lower by about 2%. The decline in the welfare is even more pronounced, because apart from the fall in income, high spread impedes consumption smoothing in the life-cycle (see right-upper panel of Figure 3). Finally, according to
the results, in the environment of null spread the aggregate value of household credit amounts to 27.8% of output.

Apart from the reasons discussed above, a large gap between the interest rate on liabilities and assets may dampen the amount of credit in the economy because households may use their assets to finance consumption instead of incurring more debt. Moreover, the high cost of carrying liabilities relative to the return on assets prompts the repayment of existing debt. These channels, which might be significant in practice, are not accounted for in our model because individuals are not allowed to have both positive deposits and positive loans.

4.2 Idiosyncratic productivity uncertainty

In the second set of simulations, we investigate how the volatility σ^2_e of the individual productivity process e, given by (20), affects the economy. Let us emphasize two issues. First, higher σ^2_e does not alter the transition matrix π, but raises the dispersion among the values from the set \mathcal{E}. Second, it leads to a raise in effective labor supply L due to reasons discussed in footnote 7. Consequently, this has a positive effect on output, the average wage and the value of pension (see Table 4).

What is more interesting for our investigation, is how changes in individual uncertainty affect the process of capital accumulation, the level of the real interest rate and the amount of credit in the economy. It is well known in the literature that if individuals are risk averse then an increase in future income uncertainty leads to a buildup of precautionary savings (see Zeldes, 1989, for a theoretical model and Carroll and Samwick, 1998, for an empirical evidence). In our model a change of σ^2_e from 0.045 to 0.075 leads to an increase of the capital-output ratio from 2.643 to 2.865, i.e. by 8.4%. Consequently, the market interest rate declines from 3.3% to 2.5%. Even though the decline in the lending rate, higher uncertainty deters individuals from taking loans, and the share of household credit in GDP declines from 14.3% to 13.4%. If individual uncertainty is low, $\sigma^2_e = 0.015$, then the value of household credit amounts to 18.9% of GDP. Finally, it can be noted that consumption profile over the life-cycle is smoother in the environment of lower uncertainty (see Table 4 and Figure 4).
4.3 Individual productivity persistence

The next set of simulations aim at analyzing how the persistence of the individual productivity process, measured by parameter ρ from equation (20), influences life-cycle decisions and the value of aggregate variables in the stationary equilibrium. The value of ρ determines the transition matrix π, and given the value of variance σ^2, it also defines set E. In order to maintain a sensible comparison, in below simulations we alter the value of σ^2 so that the unconditional variance $\sigma^2/(1 - \rho^2)$ was the same as in the benchmark economy. This means that the values of set E are kept constant.

The estimates of ρ for the US vary in the literature. According to Floden and Lindé (2001) the value of ρ is 0.91, whereas Storesletten et al. (2004b) find evidence that it is somewhere between 0.94 and 0.96. Moreover, in the subsequent article, the same authors estimate that ρ is very close and insignificantly different from unity, which would imply that the productivity process is nonstationary (Storesletten et al., 2004a). They also show that for any value of $\rho > 0.91$ their theoretical, life-cycle model is able to replicate consumption inequality in the US. For that reason, in our simulations we consider values of ρ ranging from 0.90 to 0.98.

The effects of higher productivity process persistence on the economy are as follows. An increase in the persistence raises expected life-time earnings of high-productivity individuals and diminishes expected income of low-productivity individuals. The former are therefore reducing their precautionary savings, whereas the latter are less interested in taking loans. The overall impact on the capital-output ratio is negative, which leads to an increase in the real interest rate. This further leads to a contraction in demand for credit. In our model a change of ρ from 0.96 to 0.98 leads to a decrease of the capital-output ratio from 2.643 to 2.543 and an increase of the market interest rate from 3.3% to 3.7%. Finally, the share of household credit in GDP declines from 14.3% to 12.9%, even though the share of population with non-positive assets increases from 32.5% to 33.6% (see Table 5 and Figure 5).

4.4 Replacement ratio

In the last set of simulations we analyze the economic effects of the generosity of the pension system. For that purpose we calculate the stationary equilibrium for different
values of the replacement rate of pensions relative to the average net wage earnings, which is defined by θ in (14).

In our model, changes in the replacement rate alter the uncertainty that individuals face with respect to their life-time resources. Higher θ means that uncertain income from labor is exchanged for certain income from pensions and thereby the variability of the life-cycle income profile becomes lower. As a result, higher θ means that the precautionary motive to accumulate savings is diminished, which leads to a decline in the stock of capital. An increase of the replacement ratio from 0.4 to 0.6 decreases the capital-output ratio from 2.643 to 2.533 and raises the interest rate from 3.3% to 4.2%. Even though uncertainty related to future income is lower, higher interest rate deters young workers from taking loans and leads to a decline in the value of household credit from 14.3% of GDP to 13.1% of GDP (see Table 6 and Figure 6).
5 Empirical evidence

In this section we test whether the implications of the theoretical model are confirmed by empirical data. For that purpose we model the dependency between household credit and a set of macroeconomic indicators in two ways. First, we focus on the developments of household credit in time by using panel data for 36 high and middle-income countries. Second, due to reasons discussed in the next subsection, we also analyze cross-sectional data to explain differences in the value of household credit among 27 EU countries. In both cases the most general specification, which encompasses all other specifications, is:

\[cr = \alpha + \alpha_1 \cdot \text{spread} + \alpha_2 \cdot \text{incu} + \alpha_3 \cdot \text{pers} + \alpha_4 \cdot \text{repl} + \beta \cdot X + \epsilon. \] (22)

The dependent variable \(cr = \ln(Cr/Y) \) describes the logarithm of credit to household to GDP ratio, \(\text{spread} \) is the difference between the lending and deposit rates \((r_l - r_d)\) in the theoretical model), \(\text{incu} \) and \(\text{pers} \) are individual income uncertainty and persistence \((\sigma^2_e\) and \(\rho)\), whereas \(\text{repl} \) describes the replacement ratio \((\theta)\). In line with the simulations from the previous section, the expected sign for \(\{\alpha_i : i = 1, 2, 3, 4\} \) is negative. Finally, \(X \) denotes a vector of control variables, which includes GDP per capita \((\text{gdp_cap})\) or disposable income per capita \((\text{dispinc})\), real interest rate \((\text{rate})\), unemployment rate \((\text{unemp})\) and the housing price index \((\text{hpi})\).

5.1 Data

In the two set of regressions we use two separate datasets. The first dataset spans over the 15-year period from 1995 to 2009 and comprises 36 countries, including those OECD and EU economies for which we were able to collect data on household credit and its regressors.\(^9\). In this case, however, the comparability of banking data is difficult to assess due to various accounting standards and aggregation techniques. Moreover, data

\(^9\)In particular, countries included in the panel are: Australia, Austria, Belgium, Bulgaria, Canada, Cyprus*, Czech Rep.*, Denmark, Estonia*, Finland*, France, Germany, Greece, Hungary*, Iceland*, Ireland*, Italy, Japan, Latvia*, Lithuania*, Luxembourg*, Mexico*, Netherlands, New Zealand, Norway, Poland*, Portugal, Slovakia*, Slovenia*, S. Korea, Spain, Sweden, Switzerland, Turkey*, United Kingdom, United States. Data on the housing price index are not available for countries with asterisk (*)
for $incu$ and $repl$ were unavailable. For that reason we construct the second dataset, which consists of 27 EU countries and covers the five-year period from 2005 to 2009. This dataset includes countries for which financial standards are unified to a large extent and thereby banking data are comparable. Moreover, for this dataset we were able to collect data for all variables present in specification (22). However, due to short time dimension of this dataset, the use of panel data techniques does not seem well-founded. Consequently, we calculate five-year averages for all variables and use these averages as cross-sectional data in our estimations.

Among the variables present in specification (22), individual income uncertainty $incu$ and persistence $pers$ as well as the replacement ratio $(repl)$ are not directly observable. Consequently, we need some observable measures of these variables. We approximate individual income uncertainty by the GINI coefficient of earnings because there should be a strong positive correlation between σ_z^2 and the GINI value (see Table 4). In the case of individual income persistence, we measure it by the long-term unemployment rate, which is defined as the fraction of unemployed for over one year in total unemployment. We believe that this is a good proxy as it reflects the probability of staying in one of the states from the set \mathcal{E}. Finally, we approximate the replacement rate by the ratio of income from pensions of persons aged 65-74 to income from work of persons aged 50-59. A detailed description of data sources for all variables is provided in Table 7.

5.2 Estimation results

In our first set of regressions we focus on the behavior of household credit over time. We estimate the long-run relationship between household credit and the explanatory variables with panel cointegration techniques. In particular, we employ the continuously-updated fully-modified (CupFM) estimator developed by Bai, Kao, and Ng (2009), which allows for cross-sectional dependence.\(^{10}\) The choice was motivated by the fact, that this estimator controls for the correlation among macroeconomic variables in different countries, e.g. due to common business cycles. As a robustness check, we also

\(^{10}\)We thank professor Chihwa Kao for providing us his GAUSS codes, which we adjusted for the purpose of this research.
applied other methods of estimation such as the continuously-updated bias-corrected (CupBC) estimator of Bai et al. (2009) or the fully modified OLS and DOLS estimators (Kao and Chiang, 2000). Even though the values of the estimated coefficients vary depending on the estimation technique, the general results from all methods are qualitatively very similar. The results from the other methods are available upon request.

Table 8 presents the results of estimations for 8 different specifications of model 22. The estimate of parameter α_1, which is related to the interest rate spread, is significantly negative in all regressions, even if the real interest rate is included in the model. This supports the implications of the theoretical model, which shows that changes in the interest rate spread should dampen the value of loans to households. Since the lending interest rate is usually approximated by the rate on mortgages (where the collateral values often exceed the values of loans) and by the rate on loans to prime customers in other cases, the risk premium is considerably reduced in the spread. Therefore, we can interpret the estimation result as an evidence of more costly banks providing less credit to the household sector. As regards the parameter related to individual income persistence, α_3, its estimates are always negative, but often not statistically significantly different from zero. This is also in accordance with the results of simulations from the previous section, which show that higher income persistence decreases the level of household credit.

The control variables: GDP per capita (approximating the average level of disposable income to each household) and the housing price index are also significant in all specifications and the estimates are of expected sign. In turn, the positive and usually not significant correlation between the real interest rate and the value of loans can be explained by the fact that changes in the spread explain changes in household credit better than the real interest rate itself. Another control variable, the unemployment rate, is usually not significant.

In the second set of regressions we use cross-sectional data to explain differences in the value of credit among 27 EU countries. This allows us to analyze the link between household credit and a wider range of explanatory variables, as specified in equation (22). The results, which are presented in Table 9, are as follows.
The coefficient related to the *spread* variable, α_1, is always negative, and sometimes significant. This confirms our panel data results and the implications of the theoretical model. The variable *incu* is somewhat negatively correlated with the dependent variable. The link becomes positive when more control variables are added to the regression, but remains insignificant. We also experimented with other measures of individual income uncertainty: the income quintile share ratio (income of the 20% richest to income of 20% poorest), the percentage of working households in the risk of poverty and the ratio of the number of households making ends meet without any problems and with great difficulty. The latter variable was significant in many specifications, pointing to the interpretation that a larger income discrepancy reduces the value of loans in the economy. However, this favorable result should be interpreted with a caution due to the possible impact of the credit burden on the living conditions of households. As regards the *pers* variable, the estimates of α_3 are negative and highly significant in all specifications. This result confirms the panel results and theoretical model simulations, which state that the value of household credit is negatively correlated with individual productivity persistence. For the replacement ratio (*repl*), the results show that it is negatively correlated with the value of credit in all specifications, but statistically insignificant. Given that the theoretical impact of the replacement ratio on the value of credit is low\(^{11}\), this result is broadly with what we expect. Finally, from the set of control variables, only disposable income is significant in all specifications. The real interest rate and unemployment are statistically insignificant and their coefficients are of wrong sign.

The values of R^2 indicate that the variability of household credit among EU countries can be explained in 38% by differences in the interest spread, and in 45% by differences in individual productivity persistence. The contribution of variables *incu* and *repl* in explaining the variance of household credit is low. The value of $R^2 = 0.62$ in specification (5) indicates, that our theoretical model is relatively supported by the cross-sectional data for 27 EU countries.

\(^{11}\)An increase of the replacement ratio from 40% to 60% decreases the value of household credit merely from 14.3% of GDP to 13.1% of GDP (see 6).
Overall, we believe that both the panel data and cross-sectional regressions support the results from the theoretical model. This is especially true for the interest rate spread and individual productivity persistence. The measures of income uncertainty and replacement ratio for different countries are negatively correlated with the level of household credit, but the link is statistically insignificant.
6 Directions for future work

We have shown that apart from traditional determinants of credit, i.e. real interest rate and output, there are other factors that have impact on the value of credit in the economy, such as interest rate spread, individual income uncertainty and persistence or the structure of the pension system. Moreover, we have provided evidence, that the implications of the theoretical model are to some degree confirmed by the data for OECD and EU countries. In subsequent research we hope to consider several extensions to the presented work.

First, in the current setup of the theoretical model we have not addressed the observation that a large fraction of credit to households is in the form of mortgages. Since both our results and the results of Egert et al. (2007) or Hofmann (2004) show that house prices have a significant impact on the value of credit to households, it seems interesting to analyze this relation within a theoretical life-cycle model with housing. Even though this kind of models have already been developed by some authors (Fernandez-Villaverde and Krueger, 2004; Hintermaier and Koeniger, 2009; Yang, 2009), the question about the impact of house prices or the minimum value of mortgage down-payment on the amount of credit in the economy is still relatively unexplored.

Second, in the current setup it is assumed that firms utilize capital that is borrowed from banks at the market rate. In practice, however, firms finance a large fraction of their assets with own capital (see Graham and Harvey, 2001, for empirical evidence), where the cost of external financing is usually higher than the risk-free interest rate (see Bernanke et al., 1999, and references therein). As a result, we believe that building a model with heterogeneous consumers and firms could help expand our understanding of the determinants of credit to the private sector. According to our best knowledge this kind of model has not been developed so far. However, theoretical models describing firms that are heterogeneous in terms of productivity, age or net worth has been developed (Hopenhayn, 1992; Cooley and Quadrini, 2001, e.g.), so some solution are present in the literature.

Finally, another potential extension of our work would rely on endogenizing the interest rate spread, which in the current version of the model depends solely on the fixed costs and the probability of unexpected death. The natural way to do so is
to account for credit default risk and bankruptcy regulations, as it was done e.g. in Athreya (2002); Chatterjee et al. (2007); Livshits et al. (2007), but also other factors could be taken into account, such as monopolistic competition in the banking sector.
Finally, another potential extension of our work would rely on endogenizing the interest rate spread, which in the current version of the model depends solely on the fixed costs and the probability of unexpected death. The natural way to do so is to account for credit default risk and bankruptcy regulations, as it was done e.g. in Athreya (2002); Chatterjee et al. (2007); Livshits et al. (2007), but also other factors could be taken into account, such as monopolistic competition in the banking sector.

References

Tables and figures

Table 1: Parameterization of the benchmark model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population growth rate</td>
<td>γ</td>
</tr>
<tr>
<td>Number of cohorts</td>
<td>J</td>
</tr>
<tr>
<td>Number of working cohorts</td>
<td>J₁</td>
</tr>
<tr>
<td>Share of retirees in adult population</td>
<td></td>
</tr>
<tr>
<td>Discount factor</td>
<td>β</td>
</tr>
<tr>
<td>Risk aversion</td>
<td>η</td>
</tr>
<tr>
<td>Persistence of idiosyncratic productivity process</td>
<td>ρ</td>
</tr>
<tr>
<td>Variance of idiosyncratic productivity process</td>
<td>σ²ε</td>
</tr>
<tr>
<td>Capital share</td>
<td>α</td>
</tr>
<tr>
<td>Depreciation rate</td>
<td>δ</td>
</tr>
<tr>
<td>Lending-market rate spread</td>
<td>Ψ₁</td>
</tr>
<tr>
<td>Market-deposit rate spread</td>
<td>Ψ₂</td>
</tr>
<tr>
<td>Government spending share in output</td>
<td>G/Y</td>
</tr>
<tr>
<td>Capital tax rate</td>
<td>τᵣ</td>
</tr>
<tr>
<td>Replacement rate</td>
<td>θ</td>
</tr>
</tbody>
</table>

Table 2: Solution of the benchmark model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>Y</td>
</tr>
<tr>
<td>Capital-output ratio</td>
<td>K/Y</td>
</tr>
<tr>
<td>Investment-output ratio</td>
<td>I/Y</td>
</tr>
<tr>
<td>Private consumption-output ratio</td>
<td>C/Y</td>
</tr>
<tr>
<td>Deposit rate</td>
<td>r₅</td>
</tr>
<tr>
<td>Market rate</td>
<td>r</td>
</tr>
<tr>
<td>Lending rate</td>
<td>r₇</td>
</tr>
<tr>
<td>Income tax rate</td>
<td>τ₇</td>
</tr>
<tr>
<td>Social contribution rate</td>
<td>κ</td>
</tr>
<tr>
<td>Household credit to GDP ratio</td>
<td>Cr/Y</td>
</tr>
<tr>
<td>Share of population with non-positive assets</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Survival probability and median productivity

Source: U.S. Census Bureau (2009, Sec. 2, Tab. 105) and Huggett (1996).

Figure 2: Life-cycle path for key variables
Table 3: Interest rate spread and the stationary equilibrium

<table>
<thead>
<tr>
<th></th>
<th>Interest rate spread: $r_l - r_d$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Output (Y)</td>
<td>0.441</td>
</tr>
<tr>
<td>Deposit rate (r_d)</td>
<td>0.030</td>
</tr>
<tr>
<td>Market rate (r)</td>
<td>0.030</td>
</tr>
<tr>
<td>Lending rate (r_l)</td>
<td>0.030</td>
</tr>
<tr>
<td>Average net wage (\bar{w})</td>
<td>0.264</td>
</tr>
<tr>
<td>Pension (b)</td>
<td>0.106</td>
</tr>
<tr>
<td>Capital-output ratio (K/Y)</td>
<td>2.732</td>
</tr>
<tr>
<td>Household credit to GDP ratio (Cr/Y)</td>
<td>0.278</td>
</tr>
<tr>
<td>Share of population with non-positive assets</td>
<td>0.383</td>
</tr>
</tbody>
</table>

Notes: The baseline value of the spread is 0.03.

Figure 3: Interest rate spread and life-cycle decisions

- Average income path
- Average consumption path
- Average net financial position
- Average value of credits
Table 4: Individual income uncertainty and the stationary equilibrium

<table>
<thead>
<tr>
<th></th>
<th>Individual productivity volatility σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.015</td>
</tr>
<tr>
<td>Output (Y)</td>
<td>0.349</td>
</tr>
<tr>
<td>Effective labor (L)</td>
<td>0.241</td>
</tr>
<tr>
<td>Market rate (r)</td>
<td>0.046</td>
</tr>
<tr>
<td>Average net wage (\bar{w})</td>
<td>0.210</td>
</tr>
<tr>
<td>GINI of earnings</td>
<td>31.4</td>
</tr>
<tr>
<td>Pension (b)</td>
<td>0.084</td>
</tr>
<tr>
<td>Capital-output ratio (K/Y)</td>
<td>2.364</td>
</tr>
<tr>
<td>Household credit to GDP ratio (Cr/Y)</td>
<td>0.189</td>
</tr>
<tr>
<td>Share of population with non-positive assets</td>
<td>0.325</td>
</tr>
</tbody>
</table>

Notes: The baseline value of the idiosyncratic productivity volatility is 0.045.

Figure 4: Individual income uncertainty and life-cycle decisions
Table 5: Individual productivity persistence and the stationary equilibrium

<table>
<thead>
<tr>
<th></th>
<th>Productivity persistence ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td>Output (Y)</td>
<td>0.436</td>
</tr>
<tr>
<td>Market rate (r)</td>
<td>0.031</td>
</tr>
<tr>
<td>Average net wage (\bar{w})</td>
<td>0.260</td>
</tr>
<tr>
<td>Pension (b)</td>
<td>0.104</td>
</tr>
<tr>
<td>Capital-output ratio (K/Y)</td>
<td>2.680</td>
</tr>
<tr>
<td>Household credit to GDP ratio (Cr/Y)</td>
<td>0.176</td>
</tr>
<tr>
<td>Share of population with non-positive assets</td>
<td>0.306</td>
</tr>
</tbody>
</table>

Notes: The baseline value of the productivity persistence is 0.96.

Figure 5: Individual productivity persistence and life-cycle decisions

- Average income path
- Average consumption path
- Average net financial position
- Average value of credits
Table 6: Replacement rate and the stationary equilibrium

<table>
<thead>
<tr>
<th></th>
<th>Replacement rate θ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>Output (Y)</td>
<td>0.456</td>
</tr>
<tr>
<td>Market rate (r)</td>
<td>0.022</td>
</tr>
<tr>
<td>Average net wage ($\bar{\omega}$)</td>
<td>0.287</td>
</tr>
<tr>
<td>Pension (b)</td>
<td>0.057</td>
</tr>
<tr>
<td>Social contribution rate (κ)</td>
<td>0.044</td>
</tr>
<tr>
<td>Capital-output ratio (K/Y)</td>
<td>2.966</td>
</tr>
<tr>
<td>Household credit to GDP ratio (Cr/Y)</td>
<td>0.152</td>
</tr>
<tr>
<td>Share of population with non-positive assets</td>
<td>0.308</td>
</tr>
</tbody>
</table>

Notes: The baseline value of the replacement ratio is 0.40.

Figure 6: Replacement rate and life-cycle decisions
Table 7: Data sources

<table>
<thead>
<tr>
<th>variable</th>
<th>definition</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current data</td>
<td>Panel data</td>
<td>OECD, BIS Data Bank, ECB, national central banks, Ecowin</td>
</tr>
<tr>
<td>GDP</td>
<td>nominal GDP</td>
<td>World Bank WDI</td>
</tr>
<tr>
<td>r_l</td>
<td>rate on housing loans or loans for primary customers</td>
<td>BIS Data Bank, ECB, IMF IFS</td>
</tr>
<tr>
<td>r_d</td>
<td>deposit rate</td>
<td>IMF IFS, ECB</td>
</tr>
<tr>
<td>pers</td>
<td>long-term unemployment</td>
<td>World Bank WDI, Eurostat</td>
</tr>
<tr>
<td>gdp_{cap}</td>
<td>log of GDP per capita at constant prices</td>
<td>World Bank WDI</td>
</tr>
<tr>
<td>r</td>
<td>real market rate</td>
<td>World Bank WDI</td>
</tr>
<tr>
<td>unemp</td>
<td>unemployment rate</td>
<td>World Bank WDI, Ecowin, OECD</td>
</tr>
<tr>
<td>hpi</td>
<td>log of the housing price index</td>
<td>BIS Data Bank, national central banks and stat. offices, Global Property Guide</td>
</tr>
</tbody>
</table>

Cross-sectional data

Current data	ECB	AMECO
Current data	ECB	ECB
Current data	Eurostat SILC	Eurostat
Current data	ECB	Eurostat
Current data	AMECO	AMECO
Current data	AMECO	AMECO
Current data	AMECO	AMECO

Notes: Variables present in model 22 are defined as: $cr = \ln(Cr/GDP)$, $spread = \ln(\frac{1 + r_l}{1 + r_d})$ and $rate = \ln(1 + r)$.
Table 8: Models explaining household loans using panel data from OECD and EU countries

<table>
<thead>
<tr>
<th>Specification</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$spread (\alpha_1)$</td>
<td>-3.23 (2.36)</td>
<td>-3.52 (2.57)</td>
<td>-6.56 (5.89)</td>
<td>-6.91 (6.15)</td>
<td>-6.76 (5.99)</td>
<td>-9.07 (6.06)</td>
<td>-4.67 (3.40)</td>
<td></td>
</tr>
<tr>
<td>$pers (\alpha_3)$</td>
<td>-0.10 (0.46)</td>
<td>-0.02 (0.06)</td>
<td>-0.82 (2.54)</td>
<td>-0.91 (2.86)</td>
<td>-0.72 (2.09)</td>
<td>-0.27 (0.69)</td>
<td>-0.04 (0.09)</td>
<td></td>
</tr>
<tr>
<td>gdp_cap</td>
<td>3.52 (14.2)</td>
<td>3.39 (13.8)</td>
<td>3.43 (12.5)</td>
<td>2.79 (7.27)</td>
<td>1.648 (4.33)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$rate$</td>
<td>0.94 (1.60)</td>
<td>0.84 (1.41)</td>
<td>-0.13 (0.18)</td>
<td>2.70 (3.98)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$unemp$</td>
<td>0.38 (0.32)</td>
<td></td>
<td>-1.69 (1.32)</td>
<td>0.30 (0.25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hpi</td>
<td></td>
<td></td>
<td></td>
<td>0.77 (7.41)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N is the number of countries and T is the number of years. The t statistics are presented below parameter estimates.

Notes: The dependent variable is the log-level of household credit to GDP. The main explanatory variables are the interest rate spread ($spread$) and the measure of productivity persistence ($pers$). Additional control variables are: real GDP per capita (gdp), real interest rate ($rate$), unemployment ratio ($unemp$), and the housing price index (hpi). N is the number of countries and T is the number of years. The t statistics are presented below parameter estimates.
Table 9: Models explaining household loans using cross-sectional data from EU countries

<table>
<thead>
<tr>
<th>Specification</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>4.52</td>
<td>4.27</td>
<td>4.92</td>
<td>3.28</td>
<td>5.48</td>
<td>2.96</td>
</tr>
<tr>
<td></td>
<td>(21.3)</td>
<td>(4.98)</td>
<td>(18.1)</td>
<td>(6.59)</td>
<td>(6.62)</td>
<td>(2.42)</td>
</tr>
<tr>
<td>spread (α_1)</td>
<td>-27.7</td>
<td>-19.4</td>
<td>-5.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.93)</td>
<td>(3.03)</td>
<td>(0.65)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>incu (α_2)</td>
<td>-1.72</td>
<td>0.08</td>
<td>2.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.60)</td>
<td>(0.04)</td>
<td>(1.02)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pers (α_3)</td>
<td>-2.93</td>
<td>-2.22</td>
<td>-1.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.49)</td>
<td>(3.56)</td>
<td>(2.22)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>repl (α_4)</td>
<td>-0.66</td>
<td>-0.69</td>
<td>-1.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.99)</td>
<td>(0.72)</td>
<td>(1.42)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dispinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2.59)</td>
</tr>
<tr>
<td>rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.13)</td>
</tr>
<tr>
<td>unemp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.38)</td>
</tr>
</tbody>
</table>

| N | 27 | 27 | 27 | 27 | 27 | 27 |
| R^2| 0.38| 0.01| 0.45| 0.04| 0.62| 0.72|

Notes: The dependent variable is the log-level of household credit to GDP. The main explanatory variables are the interest rate spread (spread), the measure of income uncertainty (incu), the measure of productivity persistence (pers), and the replacement ratio (repl). Additional control variables are disposable income (dispinc), real interest rate (rate), and unemployment ratio (unemp). N is the number of observations and R^2 is the coefficient of determination. The t statistics are presented below parameter estimates.